首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   2篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2004年   1篇
  1999年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1973年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Summary The junctional complexes of cells in the outer arachnoid layer overlying the cerebral cortex of 2-week-old rats were examined with freeze-fracture electron microscopy up to 60 min after transcranial cold injury to the dorsal surface of the brain. Within 30 min after injury, areas of gap and tight junctions with morphological features characteristic of junction formation and/or junction disruption were found scattered among normal junctional complexes in some arachnoid cells. Within 60 min after injury, tight junctions with features typical of less leaky zonulae occludentes were present in all arachnoid cells examined. These morphological features include increases in the number of tight junctional strands and the number of strand-to-strand anatomoses. Gap junctions were interspersed among the tight junctional strands, and many were completely encircled by the strands. The increase in the number and complexity of the tight junctional strands in response to brain injury may be the morphological basis for the maintenance of the cerebrospinal fluid-blood dural barrier.This study was supported by the National Institute of Neurological and Communicative Disorders and Stroke Grant NS20590. The opinions or assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the views of the DoD or the USUHS. The experiments reported herein were conducted according to the principles set forth in the Guide for Care and Use of Laboratory Animals, Institute of Laboratory Animal Resources, National Research Council, DHEW Pub. No. (NIH) 78-23  相似文献   
2.
Summary In the bullfrog, the meninges surrounding the central nervous system include an arachnoid mater that contains layers of cells with abundant intermediate filaments (IFs) having unique organizational characteristics. This membrane contains an inner lamina of cells that resemble fibroblasts and an outer lamina of flattened cells that are almost filled with IFs. The IFs of the outer arachnoid are arranged in compact, arching bundles that lie parallel to the outer surface of the central nervous system. Thus, sections cut tangentially to the membrane reveal bending of filament bundles, whereas transverse sections do not. In some cells bordering the subdural space, bundles of filaments are organized into highly-ordered spiral arrays. Attachments to the numerous desmosomes and, apparently, to the nuclear envelope suggest anchoring of cytoplasmic structures by the IF system. Microtubules occur primarily near the plasma membrane and the nucleus. Numerous caveolae also are associated with the plasma membrane.The unusual abundance, organization, and cytoplasmic relations of IFs in the bullfrog arachnoid suggest that this membrane may serve as an important model for study of fundamental cytoskeletal relations and function.  相似文献   
3.
Gabor G. Kovacs 《朊病毒》2016,10(5):369-376
Recent studies on iatrogenic Creutzfeldt-Jakob disease (CJD) raised concerns that one of the hallmark lesions of Alzheimer disease (AD), amyloid-β (Aβ), may be transmitted from human-to-human. The neuropathology of AD-related lesions is complex. Therefore, many aspects need to be considered in deciding on this issue. Observations of recent studies can be summarized as follows: 1) The frequency of iatrogenic CJD cases with parencyhmal and vascular Aβ deposits is statistically higher than expected; 2) The morphology and distribution of Aβ deposition may show distinct features; 3) The pituitary and the dura mater themselves may serve as potential sources of Aβ seeds; 4) Cadaveric dura mater from 2 examined cases shows Aβ deposition; and 5) There is a lack of evidence that the clinical phenotype of AD appears following the application of cadaveric pituitary hormone or dura mater transplantation. These studies support the notion that neurodegenerative diseases have common features regarding propagation of disease-associated proteins as seeds. However, until further evidence emerges, prions of transmissible spongiform encephalopathies are the only neurodegenerative disease-related proteins proven to propagate clinicopathological phenotypes.  相似文献   
4.
Telocytes (TCs) are a novel type of interstitial cells present in a wide variety of organs and tissues ( www.telocytes.com ). Telocytes are identified morphologically by a small cell body and specific long prolongations (telopodes) alternating thin segments (podomers) with dilations (podoms). The presence of TCs in rat meninges has been identified in previous research. We here present further evidence that TCs existed in canine dura mater, closed to capillary and surrounded by a great deal of collagen fibres under transmission electron microscope.  相似文献   
5.
The distribution of laminin α1 chain in adult mouse tissue was determined by immunofluorescence using monoclonal antibody 200, reacting with the globular carboxyterminus E3 fragment of α1 chain. Strong reactivity was noted only in a few tissues. Reactivity was restricted to epithelial basement membranes. Expression was noted in several epithelial basement membranes of the urinary tract, and male and female reproductive organs. In addition, expression was seen in some parts of the nervous system. Expression was seen in pia mater which surrounds the brain, and in the extracellular matrices covering the vitreous chamber and the lens of the eye. Staining was seen in the adrenal gland cortex, with strongest staining in the zona glomerulosa. Staining was negative in all other studied epithelial basement membranes, such as the lung (trachea or lung epithelium), epidermis, and all parts of the gastrointestinal tract (liver, gut) except for weak staining in the ventricle and Brunner’s glands. No expression was seen in basement membranes of fat, Schwann, or endothelial cells in any studied parts of the body. Both small- and large-size vessel walls were negative both in endothelial basement membranes and blood vessel walls, with the exception of some larger brain blood vessels in locations where epithelial cells have invaginated. Neither smooth muscle, myocardium or striated muscle expressed α1 chain. We conclude that α1-containing heterotrimers including laminin-1 (α1β1γ1) have a very restricted tissue distribution.  相似文献   
6.
目的:对一种e PTFE人工硬脑膜表面改性,将其外表面疏水特性进行改良,并观察其对兔硬脑膜缺损愈合的影响。方法:对一种e PTFE材料人工硬脑膜外表面进行光化学修饰,从而改变其对成纤维细胞吸附能力及促增殖能力。将表面改性后的人工硬脑膜和未改性人工硬脑膜修补兔硬脑膜缺损,观察其对术后1周、3周伤口愈合及脑脊液漏、浸润成纤维细胞、纤维组织厚度等的影响。结果:未处理组2只术后早期出现皮下积液,处理组无术后皮下积液的发生(P=0.12)。人工硬脑膜移植术后1周其外表面成纤维细胞数目表面改性组要明显多于未处理组(P<0.05)。人工硬脑膜移植术后3周其外表面纤维组织厚度表面改性组和未处理组无明显差异(P>0.05)。经过表面改性后的e PTFE人工硬脑膜其促进组织愈合能力要优于未改性组。结论:对e PTFE材料人工硬脑膜进行表面改性处理是一种可行有效的改良方法。  相似文献   
7.
The presence of neurotensin receptors and endopeptidase 24.11 (E-24.11) in 16 human meningioma specimens, obtained at surgery, was assessed by measuring the binding of 125I-[tyrosyl3]neurotensin(1–13) (125I-NT) and the inhibitor 3H-N((2RS)-3-hydroxyaminocarbonyl-2-benzyl-1-oxopropyl)glycine (3H-HACBO-Gly), for the receptor and enzyme, respectively. E-24.11 activity was also measured. Autoradiography, on the 16 meningiomas, showed that specific 125I-NT labeling (nonspecific labeling was assessed in the presence of excess NT) was exclusively located in the meningothelial regions. In contrast, specific 3H-HACBO-Gly labeling (nonspecific labeling was assessed in the presence of an excess of the E-24.11 inhibitor thiorphan) was exclusively found in fibroblastic regions. No specific labeling of either ligand was found on collagen or blood vessels. In vitro binding assays were performed on membranes of 10 of the 16 meningiomas. In the 4 meningiomas rich in meningothelial cells, 125I-NT specifically bound to one population of sites with Bmax ranging from 57 to 405 fmol/mg protein and Kd around 0.3 nM. These sites share common properties with the brain NT receptor, since the carboxy terminal acetyl NT(8–13) fragment bound to the same sites but with a higher affinity. The carboxy terminal analogue of NT, neuromedin N, also bound to the same sites with a 10-fold lower affinity and the sites were bradykinin and levocabastine insensitive. In the 4 meningiomas rich in fibroblastic cells, 3H-HACBO-Gly specifically bound to one population of sites with Bmax ranging from 251 to 739 fmol/mg protein and Kd around 2.8 nM. In agreement with the binding data, E-24.11 activity, expressed in fmol 3H-[D-Ala2]leucine enkephalin degraded/min/mg protein, ranged from 102 to 281 and was specifically inhibited by the E-24.11 inhibitor retrothiorphan R, indicating the presence of biologically active E-24.11 in the meningiomas. In the 2 meningiomas poor in tumoral cells and rich in collagen bundles, no specific binding was found with either ligand. The presence, in abundance, of NT receptors and E-24.11 on the meningothelial components and on the fibroblastic components of the meningiomas, respectively, is a new indicator of the duality of the arachnoid cell from which these tumors arise. These markers may be useful for the classification of the histologic phenotypes of the meningiomas, and for clinical diagnosis of small meningiomas using SPECT and for the treatment of surgically inaccessible meningiomas.  相似文献   
8.
We have identified cells expressing Cx26, Cx30, Cx32, Cx36 and Cx43 in gap junctions of rat central nervous system (CNS) using confocal light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling (FRIL). Confocal microscopy was used to assess general distributions of connexins, whereas the 100-fold higher resolution of FRIL allowed co-localization of several different connexins within individual ultrastructurally-defined gap junction plaques in ultrastructurally and immunologically identified cell types. In >4000 labeled gap junctions found in >370 FRIL replicas of gray matter in adult rats, Cx26, Cx30 and Cx43 were found only in astrocyte gap junctions; Cx32 was only in oligodendrocytes, and Cx36 was only in neurons. Moreover, Cx26, Cx30 and Cx43 were co-localized in most astrocyte gap junctions. Oligodendrocytes shared intercellular gap junctions only with astrocytes, and these heterologous junctions had Cx32 on the oligodendrocyte side and Cx26, Cx30 and Cx43 on the astrocyte side. In 4 and 18 day postnatal rat spinal cord, neuronal gap junctions contained Cx36, whereas Cx26 was present in leptomenigeal gap junctions. Thus, in adult rat CNS, neurons and glia express different connexins, with “permissive” connexin pairing combinations apparently defining separate pathways for neuronal vs. glial gap junctional communication.  相似文献   
9.

Background

Expression quantitative trait loci (eQTL) play an important role in the regulation of gene expression. Gene expression levels and eQTLs are expected to vary from tissue to tissue, and therefore multi-tissue analyses are necessary to fully understand complex genetic conditions in humans. Dura mater tissue likely interacts with cranial bone growth and thus may play a role in the etiology of Chiari Type I Malformation (CMI) and related conditions, but it is often inaccessible and its gene expression has not been well studied. A genetic basis to CMI has been established; however, the specific genetic risk factors are not well characterized.

Results

We present an assessment of eQTLs for whole blood and dura mater tissue from individuals with CMI. A joint-tissue analysis identified 239 eQTLs in either dura or blood, with 79% of these eQTLs shared by both tissues. Several identified eQTLs were novel and these implicate genes involved in bone development (IPO8, XYLT1, and PRKAR1A), and ribosomal pathways related to marrow and bone dysfunction, as potential candidates in the development of CMI.

Conclusions

Despite strong overall heterogeneity in expression levels between blood and dura, the majority of cis-eQTLs are shared by both tissues. The power to detect shared eQTLs was improved by using an integrative statistical approach. The identified tissue-specific and shared eQTLs provide new insight into the genetic basis for CMI and related conditions.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-014-1211-8) contains supplementary material, which is available to authorized users.  相似文献   
10.
Dopamine receptors (Dar) were studied as a component of the nervous dopaminergic system in the human dura mater. Dar were stained in several dural zones (vascular, perivascular, intervascular) in different regions (basal, calvarial, tentorial, occipital, frontal, parietal, temporal) of the cranial meninges. Specimens of human dura mater were harvested from autopsies of 10 elderly male subjects (age range, 60-75 years). Dar were labeled with specific (H3) markers, studied with radiobinding techniques (including liquid scintillation), stained for light microscope autoradiography, and measured by means of quantitative analysis of images. All results were evaluated with statistical analysis to identify significant results. More dural Dar were found in the basal region than in the calvarial one. Moreover, Dar are more abundant in the vascular and perivascular dural zone than in the intervascular one. The vascular distribution of Dar seemed to indicate that Dar play a role in the control of meningeal blood vessels. The location and distribution of D1 and D2 receptors in the human cranial dura mater confirmed the presence of a dopaminergic system, which could play an important role in controlling blood flow and/or other functions of meningeal membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号